Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces

نویسندگان

  • Yong Zhu
  • Kenneth M. Liechti
  • K. Ravi-Chandar
چکیده

Polyurea coatings on steel form tough, flexible and chemically resistant surfaces, making them ideal for a variety of applications. An important issue for polyurea coatings in some cases is their adhesion to steel under various loading conditions in aggressive environments. In this paper, adhesion was examined using steel/polyurea/steel sandwich specimens and interfacial fracture mechanics. The mode 1 and mode 2 interfacial fracture behaviors were characterized by two independent traction–separation laws. The traction–separation laws were measured directly by recording the J-integral and the end-opening displacement in the directions normal and tangential to the steel/polyurea interface. In each case, the traction was initially nonzero, increased with increasing separation, reached its peak value and then decreased with further increasing opening. Strong rate-dependent effects were found for both modes of fracture and were attributed to the interfacial behavior. Porosity introduced during the processing of the polyurea affected the traction–separation laws and associated fracture mechanisms. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectiveness of advanced coating systems for mitigating blast effects on steel components

The objective of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation tool for steel components. The response of polyurea coated steel components under blast loading is studied using the explicit LS-DYNA code with appropriate loading time histories supplied using a computational fluid dynamics (CFD) code developed at Penn State University, PUM...

متن کامل

Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

0167-6636/$ see front matter 2009 Elsevier Ltd doi:10.1016/j.mechmat.2009.09.009 * Corresponding author. Address: University of Ca Mechanical and Aerospace Engineering, 4909 Eng 9500 Gilman Drive, La Jolla, CA 92093-0416, USA. T E-mail address: [email protected] (S. Nemat-Nasser). Results of computationalmodeling and simulation of the response ofmonolithicDH-36 steel plates and bilayer steel-polyure...

متن کامل

Numerical study of the effect of polyurea on the performance of steel plates under blast loads

We present the results of our numerical simulation of the dynamic response and deformation of 1 m diameter circular DH-36 steel plates and DH-36 steel-polyurea bilayers, subjected to blast-like loads. Different thicknesses of the polyurea are considered and the effect of polyurea thickness on the performance of steel plates under blast loads is investigated. For each polyurea thickness, we have...

متن کامل

Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

We summarize the results of the response of monolithic steel plates and steel-polyurea bilayer plates to impulsive blast loads produced in direct pressure-pulse experiments, focusing on the deformation and failure modes of the plates. In these experiments, an impulsive pressure pulse is applied to a steel plate through water or soft polyurethane that simulates shock loading with a peak pressure...

متن کامل

Numerical modeling of response of monolithic and bilayer plates to impulsive loads

In this paper, we present and discuss the results of our numerical simulation of the dynamic response and failure modes of circular DH-36 steel plates and DH-36 steel–polyurea bilayers, subjected to impulsive loads in reverse ballistic experiments. In our previous article, we reported the procedure and results of these experiments [MR Amini, JB Isaacs, S Nemat-Nasser. Experimental investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008